Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38315607

RESUMO

Multi-Source-Free Unsupervised Domain Adaptation (MSFUDA) requires aggregating knowledge from multiple source models and adapting it to the target domain. Two challenges remain: 1) suboptimal coarse-grained (domain-level) aggregation of multiple source models, and 2) risky semantics propagation based on local structures. In this paper, we propose an evidential learning method for MSFUDA, where we formulate two uncertainties, i.e. Evidential Prediction Uncertainty (EPU) and Evidential Adjacency-Consistent Uncertainty (EAU), respectively for addressing the two challenges. The former, EPU, captures the uncertainty of a sample fitted to a source model, which can suggest the preferences of target samples for different source models. Based on this, we develop an EPU-Based Multi-Source Aggregation module to achieve fine-grained, instance-level source knowledge aggregation. The latter, EAU, provides a robust measure of consistency among adjacent samples in the target domain. Utilizing this, we develop an EAU-Guided Local Structure Mining module to ensure the trustworthy propagation of semantics. The two modules are integrated into the Evidential Aggregation and Adaptation Framework (EAAF), and we demonstrated that this framework achieves state-of-the-art performances on three MSFUDA benchmarks. Code is available at https://github.com/SPIresearch/EAAF.

2.
bioRxiv ; 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37461561

RESUMO

There are two main families of G protein-coupled receptors that detect odours in humans, the odorant receptors (ORs) and the trace amine-associated receptors (TAARs). Their amino acid sequences are distinct, with the TAARs being most similar to the aminergic receptors such as those activated by adrenaline, serotonin and histamine. To elucidate the structural determinants of ligand recognition by TAARs, we have determined the cryo-EM structure of a murine receptor, mTAAR7f, coupled to the heterotrimeric G protein Gs and bound to the odorant N,N-dimethylcyclohexylamine (DMCH) to an overall resolution of 2.9 Å. DMCH is bound in a hydrophobic orthosteric binding site primarily through van der Waals interactions and a strong charge-charge interaction between the tertiary amine of the ligand and an aspartic acid residue. This site is distinct and non-overlapping with the binding site for the odorant propionate in the odorant receptor OR51E2. The structure, in combination with mutagenesis data and molecular dynamics simulations suggests that the activation of the receptor follows a similar pathway to that of the ß-adrenoceptors, with the significant difference that DMCH interacts directly with one of the main activation microswitch residues.

3.
IEEE Trans Image Process ; 32: 2033-2048, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37030696

RESUMO

Source-free unsupervised domain adaptation (SFUDA) aims to learn a target domain model using unlabeled target data and the knowledge of a well-trained source domain model. Most previous SFUDA works focus on inferring semantics of target data based on the source knowledge. Without measuring the transferability of the source knowledge, these methods insufficiently exploit the source knowledge, and fail to identify the reliability of the inferred target semantics. However, existing transferability measurements require either source data or target labels, which are infeasible in SFUDA. To this end, firstly, we propose a novel Uncertainty-induced Transferability Representation (UTR), which leverages uncertainty as the tool to analyse the channel-wise transferability of the source encoder in the absence of the source data and target labels. The domain-level UTR unravels how transferable the encoder channels are to the target domain and the instance-level UTR characterizes the reliability of the inferred target semantics. Secondly, based on the UTR, we propose a novel Calibrated Adaption Framework (CAF) for SFUDA, including i) the source knowledge calibration module that guides the target model to learn the transferable source knowledge and discard the non-transferable one, and ii) the target semantics calibration module that calibrates the unreliable semantics. With the help of the calibrated source knowledge and the target semantics, the model adapts to the target domain safely and ultimately better. We verified the effectiveness of our method using experimental results and demonstrated that the proposed method achieves state-of-the-art performances on the three SFUDA benchmarks. Code is available at https://github.com/SPIresearch/UTR.

4.
Ultrasound Med Biol ; 49(1): 106-121, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36241588

RESUMO

Ultrasound-based assistive tools are aimed at reducing the high skill needed to interpret a scan by providing automatic image guidance. This may encourage uptake of ultrasound (US) clinical assessments in rural settings in low- and middle-income countries (LMICs), where well-trained sonographers can be scarce. This paper describes a new method that automatically generates an assistive video overlay to provide image guidance to a user to assess placenta location. The user captures US video by following a sweep protocol that scans a U-shape on the lower maternal abdomen. The sweep trajectory is simple and easy to learn. We initially explore a 2-D embedding of placenta shapes, mapping manually segmented placentas in US video frames to a 2-D space. We map 2013 frames from 11 videos. This provides insight into the spectrum of placenta shapes that appear when using the sweep protocol. We propose classification of the placenta shapes from three observed clusters: complex, tip and rectangular. We use this insight to design an effective automatic segmentation algorithm, combining a U-Net with a CRF-RNN module to enhance segmentation performance with respect to placenta shape. The U-Net + CRF-RNN algorithm automatically segments the placenta and maternal bladder. We assess segmentation performance using both area and shape metrics. We report results comparable to the state-of-the-art for automatic placenta segmentation on the Dice metric, achieving 0.83 ± 0.15 evaluated on 2127 frames from 10 videos. We also qualitatively evaluate 78,308 frames from 135 videos, assessing if the anatomical outline is correctly segmented. We found that addition of the CRF-RNN improves over a baseline U-Net when faced with a complex placenta shape, which we observe in our 2-D embedding, up to 14% with respect to the percentage shape error. From the segmentations, an assistive video overlay is automatically constructed that (i) highlights the placenta and bladder, (ii) determines the lower placenta edge and highlights this location as a point and (iii) labels a 2-cm clearance on the lower placenta edge. The 2-cm clearance is chosen to satisfy current clinical guidelines. We propose to assess the placenta location by comparing the 2-cm region and the bottom of the bladder, which represents a coarse localization of the cervix. Anatomically, the bladder must sit above the cervix region. We present proof-of-concept results for the video overlay.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Gravidez , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Ultrassonografia , Bexiga Urinária/diagnóstico por imagem , Placenta/diagnóstico por imagem
5.
Sensors (Basel) ; 22(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36433399

RESUMO

It is essential to estimate the sleep quality and diagnose the clinical stages in time and at home, because they are closely related to and important causes of chronic diseases and daily life dysfunctions. However, the existing "gold-standard" sensing machine for diagnosis (Polysomnography (PSG) with Electroencephalogram (EEG) measurements) is almost infeasible to deploy at home in a "ubiquitous" manner. In addition, it is costly to train clinicians for the diagnosis of sleep conditions. In this paper, we proposed a novel technical and systematic attempt to tackle the previous barriers: first, we proposed to monitor and sense the sleep conditions using the infrared (IR) camera videos synchronized with the EEG signal; second, we proposed a novel cross-modal retrieval system termed as Cross-modal Contrastive Hashing Retrieval (CCHR) to build the relationship between EEG and IR videos, retrieving the most relevant EEG signal given an infrared video. Specifically, the CCHR is novel in the following two perspectives. Firstly, to eliminate the large cross-modal semantic gap between EEG and IR data, we designed a novel joint cross-modal representation learning strategy using a memory-enhanced hard-negative mining design under the framework of contrastive learning. Secondly, as the sleep monitoring data are large-scale (8 h long for each subject), a novel contrastive hashing module is proposed to transform the joint cross-modal features to the discriminative binary hash codes, enabling the efficient storage and inference. Extensive experiments on our collected cross-modal sleep condition dataset validated that the proposed CCHR achieves superior performances compared with existing cross-modal hashing methods.


Assuntos
Eletroencefalografia , Transtornos do Sono-Vigília , Humanos , Polissonografia , Sono , Aprendizagem
6.
Artigo em Inglês | MEDLINE | ID: mdl-36279326

RESUMO

Recently, a hierarchical fine-grained fusion mechanism has been proved effective in cross-modal retrieval between videos and texts. Generally, the hierarchical fine-grained semantic representations (video-text semantic matching is decomposed into three levels including global-event representation matching, action-relation representation matching, and local-entity representation matching) to be fused can work well by themselves for the query. However, in real-world scenarios and applications, existing methods failed to adaptively estimate the effectiveness of multiple levels of the semantic representations for a given query in advance of multilevel fusion, resulting in a worse performance than expected. As a result, it is extremely essential to identify the effectiveness of hierarchical semantic representations in a query-adaptive manner. To this end, this article proposes an effective query-adaptive multilevel fusion (QAMF) model based on manipulating multiple similarity scores between the hierarchical visual and text representations. First, we decompose video-side and text-side representations into hierarchical semantic representations consisting of global-event level, action-relation level, and local-entity level, respectively. Then, the multilevel representation of the video-text pair is aligned to calculate the similarity score for each level. Meanwhile, the sorted similarity score curves of the good semantic representation are different from the inferior ones, which exhibit a "cliff" shape and gradually decline (see Fig. fig1 as an example). Finally, we leverage the Gaussian decay function to fit the tail of the score curve and calculate the area under the normalized sorted similarity curve as the indicator of semantic representation effectiveness, namely, the area of good semantic representation is small, and vice versa. Extensive experiments on three public benchmark video-text datasets have demonstrated that our method consistently outperforms the state-of-the-art (SoTA). A simple demo of QAMF will soon be publicly available on our homepage: https://github.com/Lab-ANT.

7.
JMIR Res Protoc ; 11(9): e37374, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36048518

RESUMO

BACKGROUND: The World Health Organization recommends a package of pregnancy care that includes obstetric ultrasound scans. There are significant barriers to universal access to antenatal ultrasound, particularly because of the cost and need for maintenance of ultrasound equipment and a lack of trained personnel. As low-cost, handheld ultrasound devices have become widely available, the current roadblock is the global shortage of health care providers trained in obstetric scanning. OBJECTIVE: The aim of this study is to improve pregnancy and risk assessment for women in underserved regions. Therefore, we are undertaking the Computer-Assisted Low-Cost Point-of-Care UltraSound (CALOPUS) project, bringing together experts in machine learning and clinical obstetric ultrasound. METHODS: In this prospective study conducted in two clinical centers (United Kingdom and India), participating pregnant women were scanned and full-length ultrasounds were performed. Each woman underwent 2 consecutive ultrasound scans. The first was a series of simple, standardized ultrasound sweeps (the CALOPUS protocol), immediately followed by a routine, full clinical ultrasound examination that served as the comparator. We describe the development of a simple-to-use clinical protocol designed for nonexpert users to assess fetal viability, detect the presence of multiple pregnancies, evaluate placental location, assess amniotic fluid volume, determine fetal presentation, and perform basic fetal biometry. The CALOPUS protocol was designed using the smallest number of steps to minimize redundant information, while maximizing diagnostic information. Here, we describe how ultrasound videos and annotations are captured for machine learning. RESULTS: Over 5571 scans have been acquired, from which 1,541,751 label annotations have been performed. An adapted protocol, including a low pelvic brim sweep and a well-filled maternal bladder, improved visualization of the cervix from 28% to 91% and classification of placental location from 82% to 94%. Excellent levels of intra- and interannotator agreement are achievable following training and standardization. CONCLUSIONS: The CALOPUS study is a unique study that uses obstetric ultrasound videos and annotations from pregnancies dated from 11 weeks and followed up until birth using novel ultrasound and annotation protocols. The data from this study are being used to develop and test several different machine learning algorithms to address key clinical diagnostic questions pertaining to obstetric risk management. We also highlight some of the challenges and potential solutions to interdisciplinary multinational imaging collaboration. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR1-10.2196/37374.

8.
Nat Plants ; 8(1): 68-77, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34949800

RESUMO

The root:shoot ratio has long been known to be enhanced in plants under drought stress. Here we discovered that osmotic stress enhances long-distance sucrose transport to increase the root:shoot ratio in an abscisic-acid-dependent manner. The Arabidopsis sucrose transporters SWEET11 and 12, key players in phloem loading, are rapidly phosphorylated upon drought and abscisic acid treatments. The drought- and abscisic-acid-activated SnRK2 protein kinases phosphorylate the carboxy-terminal cytosolic regions of SWEET11 and 12. This phosphorylation enhances the oligomerization and sucrose transport activity of SWEETs, which results in elevated sucrose contents in roots and improved root growth under drought stress, leading to the enhanced root:shoot ratio of biomass and drought resistance. Notably, the expression of phospho-mimic SWEETs led to improved root growth even under non-stressed conditions. The phosphorylation of sucrose transporters provides an explanation for the long-standing observation that drought stress enhances the root:shoot ratio in plants and suggests a strategy for engineering drought-resistant crops.


Assuntos
Secas , Sacarose , Ácido Abscísico/metabolismo , Regulação da Expressão Gênica de Plantas , Fosforilação , Raízes de Plantas/metabolismo , Estresse Fisiológico , Sacarose/metabolismo
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 235: 118260, 2020 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-32217442

RESUMO

Eu/Tb co-doped films with low concentration gold nanorods have been prepared using the solution process. The luminescence spectra investigations indicate that the introduction of nanorods can effectively enhance the energy transfer from Tb to Eu under excitation of 292 nm, because of the plasmonic coupling with excited Tb complex. Under excitation of 360 nm, the emission at 612 nm is enhanced, the enhancement factor increases and then decreases as the molar ratio of Tb and Eu increases. The luminescence enhancement is attributed to the metal enhanced luminescence resulting from plasmonic coupling with excited Eu complex. The dual effects of LSPR on energy transfer and emission enhancement are both observed. More details on the luminescence of Eu/Tb co-doped films with nanorods are demonstrated, which gain a deeper understanding of the interactions luminescent-particle and luminescent-luminescent.

10.
Sensors (Basel) ; 16(9)2016 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-27589760

RESUMO

The ability to detect the presence as well as classify the activities of individuals behind visually obscuring structures is of significant benefit to police, security and emergency services in many situations. This paper presents the analysis from a series of experimental results generated using a through-the-wall (TTW) Frequency Modulated Continuous Wave (FMCW) C-Band radar system named Soprano. The objective of this analysis was to classify whether an individual was carrying an item in both hands or not using micro-Doppler information from a FMCW sensor. The radar was deployed at a standoff distance, of approximately 0.5 m, outside a residential building and used to detect multiple people walking within a room. Through the application of digital filtering, it was shown that significant suppression of the primary wall reflection is possible, significantly enhancing the target signal to clutter ratio. Singular Value Decomposition (SVD) signal processing techniques were then applied to the micro-Doppler signatures from different individuals. Features from the SVD information have been used to classify whether the person was carrying an item or walking free handed. Excellent performance of the classifier was achieved in this challenging scenario with accuracies up to 94%, suggesting that future through wall radar sensors may have the ability to reliably recognize many different types of activities in TTW scenarios using these techniques.


Assuntos
Efeito Doppler , Radar , Processamento de Sinais Assistido por Computador , Algoritmos , Análise Discriminante , Humanos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...